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1 Introduction

A threshold ECDSA signature scheme allow groups of n players to jointly produce
an ECDSA signature without exposing the corresponding ECDSA private key,
and no subset of less than t+ 1 players is able to produce a signature. Generally,
such schemes also allow n players to jointly generate an ECDSA public/private
key pair, without the need for a dealer, and where the public key is known by
everyone.

Interest in threshold ECDSA schemes has increased recently, with the pop-
ularisation of blockchains (such as Bitcoin and Ethereum) that make use of
ECDSA signatures to custody and spend cryptocurrencies. Using threshold
ECDSA schemes, groups of n players can take joint custody of cryptocurrencies,
and only spend these funds when at least t+ 1 players agree that this should be
done.

The most recent threshold DSA scheme, which is general enough to support
ECDSA specifically, was introduced by Gennaro et al. [1]. This scheme allows
n ≥ t+ 1 players to generate public/private keys and produce signatures. This
work is primarily an extension of [2], improving its efficiency and reducing its
complexity. Threshold DSA schemes were previously introduced by [3], and [4].
The main advantage of [2] and [1] over these schemes is threshold-optimality
(the scheme is secure against t adversaries, and only requires participation from
t+ 1 players).

In the context of large-scale globally distributed Byzantine networks, where
participants are distributed all around the world, can be anyone, are constantly
changing, and latency is large and highly variant, robustness against offline
participants is critical to the practical usability of any protocol. In [1], the use
of additive secret sharing, inspired by SPDZ [5], introduces moments in the
protocol where failure to participate by one player causes the protocol to halt
(and it needs to be repeated from a prior round). This might be usable for small
groups, but it is impractical for large globally distributed groups where honest
players are likely to experience unexpected downtime or network outages. In [2],
the need for trusted setup of an additively homomorphic encryption scheme (the
removal of which was the core improvement made by [1]) prevents it from being
efficient with a large number of players in a high-latency network.

In [3], a scheme is presented that is robust against malicious adversaries,
but makes extensive use of secure broadcasts and rounds of complaining against
misbehaving players. This introduces extra rounds of communication, and
more constraints on network timing, which make it inappropriate for large-scale
globally distributed networks. On the other hand [4] requires O(t) rounds of
communication using Paillier’s encryption with a modulus N = O(q3t−1), making
it unsuitable for a large number of participants.

In this paper, we present a threshold ECDSA scheme, based on [3], that is
practical for use in large-scale globally distributed networks. It is robustly secure
against t malicious adversaries, assuming n = 3t+ 1 players, and requires fewer
rounds than [3]. During both ECDSA key generation and signing, up to t players
can go offline at the beginning, middle, or end of a round, and the protocols will
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complete successfully without the need to go back repeat from a prior round.

1.1 Contributions

Our threshold ECDSA scheme is based on [3] but replaces the protocols that
generate the random sharings (random number generation, random zero gen-
eration, and random key-pair generation) with ones that don’t require secure
broadcasts and can be proven in Canetti’s security framework [6]. Briefly, these
new protocols are as follows.

• (Biased RNG πn,kBRNG): This is similar to the RNG protocol in [7], but we
call it biased because of the ability of a rushing adversary to influence
the sharing (but not the underlying random number). The exact protocol
is similar to the one in [3] but secure broadcasting is replaced with a
Byzantine fault tolerant consensus protocol.

• (RNG πn,kRNG ): This is the unbiased version of πn,kBRNG. It is built using πn,kBRNG.
Because the shares of honest players cannot be biased, we are able to prove
its security in Canetti’s framework.

• (Random zero generation πn,kRZG ): This is the same as πn,kRNG except that
instead of generating shares of a random value, it generates shares of the
additive identity (zero element) of the field. In [3] this is achieved using a
variation of their robust RNG protocol. However, in this paper we will use
a protocol very similar to our πn,kRNG to again avoid the biasing problem.

• (Random key-pair generation πn,kRKPG): This is a distributed key-pair genera-

tion protocol built using πn,kRNG . A distributed key-pair generation protocol
is also presented in [8], but it requires extra rounds of secure broadcasting
to remove biasing of the public key.

Additionally, we also present proofs of security for open protocols; these
protocols are the familiar opening of a shared secret. The proofs are given for
Canetti’s security framework, as we want to prove that the ECDSA signature
algorithm is secure in this framework, and opens are needed for multiplying
shared secrets and also inverting a shared secret. An added benefit of having
security proofs of our subprotocols in Canetti’s framework is that from the
composability property, they can be readily used for other applications as well.
However, we will see that for producing ECDSA signatures, we get the (weaker)
security property proven in [3] for free as the protocols are almost the same.

1.2 Organisation

The rest of the paper is structured as follows. First, background material includ-
ing probability theory, Shamir secret sharing and computational assumptions
will be presented. Next, the security framework to be used is described. After
this, some cryptographic primitives that will be used are defined. The ECDSA
signature algorithm will then be introduced, and how it will be achieved in
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SMPC, making comparisons to previous work. The rest of the paper is dedicated
to the SMPC protocols and their security. Initially, the more primitive protocols
such as opening shared secrets and random number generation are described.
Next, higher level protocols like multiplication and field inversion are constructed
using these primitives. Finally, we will present the formal theorems for the
security of our protocol for computing ECDSA signatures.

2 Background

In this section we outline some background material that will be used throughout
the paper. This includes basic probability theory definitions and theorems,
Shamir Secret Sharing, cryptographic assumptions and also some notation.

2.1 Notation

Here we outline some common notation that will be used in this paper. The
natural numbers are denoted by the set N, where 0 /∈ N; i.e. N = {1, 2, . . .}. We
will use F to denote an arbitrary field (in this paper we will only be concerned
with finite fields). When talking about field elements, it is understood that 0
and 1 represent respectively the additive and multiplicative identity of the field.
An anonymous probability measure is represented by P; this will appear in cases
where a probability measure is being used where one has not been explicitly
defined, and the definition of it should be clear from the context. The number
of elements in a finite set A will be denoted |A|. Generally, we will denote index
sets as I or its non calligraphic form I. We also state the following definitions.
For a given index set I, we define the notation (xi)i∈I to be the |I|-tuple of
elements (xi1 , xi2 , . . . , xin), where {i1, . . . , in} = I. In all cases in this paper,
there will exist some order on I (almost always we will have I ⊂ F for some
finite field F), and so in the above we will assume that i1 < i2 < · · · < in. The
empty set will be denoted ∅.

Definition 1. Let a set A be given. Denote the power set of A, i.e. the set of
all subsets of A, by ℘(A).

Definition 2. Let the set of consecutive natural numbers from 1 to n inclusive,
i.e. 1, 2, . . . , n, be denoted by [n].

Definition 3. Let the set of consecutive natural numbers from 0 to n inclusive,
i.e. 0, 1, . . . , n, be denoted by [n]0.

2.2 General Definitions

A negligible function is one that approaches zero very fast. This is made precise
in the following definition.
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Definition 4 (Negligible function). A function f : N→ R is negligible if for all
c ∈ N there exists some N ∈ N such that for all x ≥ N

|f(x)| < 1

xc
.

In this case we say that f is a negligible function, or that f is negligible.

2.3 Probability

Many of the security definitions and consequently also the proofs of security
are formulated in terms of probability theory. We therefore collect some key
definitions and theorems that we will use in this paper here. For more details
on the underlying measure and probability theory, some key definitions and
theorems are collected in Appendix A for convenience.

We first define what it means for two random variables to have equal distri-
butions. The idea is that the possible outcomes for the random variables should
have the same probabilities.

Definition 5. Let (Ω1,Σ1,P1) and (Ω2,Σ2,P2) be probability spaces, (E, E) a
measurable space, and X1 : Ω1 → E and X2 : Ω2 → E be two random variables.
We say that X1 and X2 are identically distributed if ∀A ∈ E we have

P1 ({ω ∈ Ω1|X1(ω) ∈ A}) = P2 ({ω ∈ Ω2|X2(ω) ∈ A}) .

In this case we write X1
d
= X2.

Here we present a result that will be useful in the proofs of security. This
formalises the notion that adding a uniformly random element to some other
element results in an element that is itself uniformly random. This is presented
abstractly in the following theorem, and then the result of interest follows as a
corollary. The proof can be found in Appendix B.

Theorem 1. Let (Ω,Σ,P) be a probability space, E a finite set with n elements,
and fi : Ω→ E for 1 ≤ i ≤ n be functions that are measurable in the context of
the measurable spaces (Ω,Σ) and (E,℘(E)) and satisfy the property

fi(ω) 6= fj(ω) ∀ω ∈ Ω ∀i 6= j where i, j ∈ {1, . . . , n}.

Let F = {f1, . . . , fn} and consider the probability space (F,℘(F ), UF ). Construct
the product probability space (Ω × F,Σ ×℘(F ), µ) where µ is the appropriate
product measure. Define the random variable

X : Ω× F → E

(ω, f) 7→ f(ω)

Then X is uniformly distributed on E.
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Corollary 1. Let (Fn,℘(Fn),P) be a probability space, where F is a finite field.
Let x, y ∈ Fn be random such that x is distributed according to P, and y is
uniformly distributed and independent from x. Then the random variable x+ y
is uniformly distributed, where when n > 1 the addition is element-wise.

Proof. This follows from Theorem 1 by setting (Ω,Σ,P) = (Fn,℘(Fn),P), E =
Fn, and defining fi by fi(ω) = ω + i for all i ∈ Fn.

Here we formalise another result that will be used in the proofs of security,
to ease their exposition. The result is simple: if two random variables have
equal distributions, then applying some deterministic function f to these random
variables results in two new random variables that also have equal distributions.

Theorem 2. Let (Ω1,Σ1,P1) and (Ω2,Σ2,P2) be probability spaces, (E, E) be a
measurable space, and X1 : Ω1 → E and X2 : Ω2 → E be random variables. Let
(F,F) be a measurable space and f : E → F be a measurable function. Then if

X1
d
= X2, it follows that f(X1)

d
= f(X2).

Proof. Define the random variables Y1 = f ◦ X1 and Y2 = f ◦ X2 and let
A ∈ F be arbitrary. We need to show that P1(Y −11 (A)) = P2(Y −12 (A)). But by
assumption P1(X−11 (B)) = P2(X−12 (B)) for any B ∈ E , and in particular for
B = f−1(A).

2.4 Secret Sharing

We will consider the secret sharing technique of Shamir [9]. Shamir secret sharing
is a technique that allows for the distribution of a secret to n players such that
any subset of k or more players can reconstruct the secret, but any less than k
can learn nothing about the secret. The parameters n, k ∈ N (where n ≥ k) can
be chosen as required.

Any secret in a field can be shared. Let (F,+, · ) be a finite field and n, k ∈ N
be given where n ≥ k. Let the n players be {Pi}i∈I where I ⊂ F \ {0} and
|I| = n. We can “share” a secret s ∈ F by first choosing uniformly random
c1, . . . , ck−1 ∈ F and constructing the polynomial

p(x) = s+

k−1∑
j=1

cjx
j .

Player Pi is given a “share” si = p(i). Note that p(0) = s which is why we
should ensure that 0 /∈ I.

Any subset of players {Pi}i∈R such that R ⊂ I and |R| ≥ k can reconstruct
the secret s by interpolating to reconstruct the original polynomial as follows:

p(x) =
∑
i∈R

si
∏
j∈R
j 6=i

x− xj
xi − xj

.
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The secret is simply p(0) and so the players can find s using the above;

s =
∑
i∈R

si
∏
j∈R
j 6=i

xj
xj − xi

.

Define the function that takes the random coefficients to resulting shares by

ϑk : ℘(F)× Fk → F|I|

I, (c0, . . . , ck−1) 7→

(
k−1∑
i=0

jici

)
j∈I

,

where naturally the secret is c0.
We now present a result that tells us how a subset of shares is distributed

given that we know how the secret is distributed. This result will be useful later
on in our security proofs. A similar result can be found in [10]. The proof of
this result can be found in Appendix C.

Theorem 3. Let x1, . . . , xn be a k-sharing of some x ∈ F, where x has distribu-
tion determined by the probability space (F,℘(F), µ). Suppose that the sharing is
a uniformly random one; that the remaining coefficients c1, . . . , ck−1 that define
the sharing are all uniformly and independently distributed. Let I ⊂ I with
|I| = t. Precisely, the set (xi)i∈I is the random variable

X : Fk → Ft

(x, c1, . . . , ck−1) 7→

x+
k−1∑
j=1

cji
j


i∈I

(1)

which has the associated product probability measure that we will denote by Pt.
Then this measure satisfies

Pt(X = z) =

{
µ({y})|F|−k+1 t ≥ k
|F|−t t < k

for all z ∈ Ft that form part of some consistent k-sharing, where in the former
case y ∈ F is determined uniquely from z.

Often, we will need to consider what the distribution of the shares are, given
some subset that has been fixed. The following definition introduces a notation
for the set of possible sharings given the fixed subset.

Definition 6. Let t, k, n ∈ N with t < k ≤ n. Let I ∈ Fn be an index set with
|I| = n and let I ⊂ I be such that |I| = t. Let the shares x = (xi)i∈I ∈ Ft be
fixed. Then we define the set Sx,I,I to be the set of possible collections of n− t
shares that extend x to a consistent k-sharing that has n shares of some field
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element. Precisely, Sx,I,I is the set of all values (yi)i∈I\I in Fn−t such that there

exists (c0, . . . , ck−1) ∈ Fk for which the following hold:

xi =
k−1∑
j=0

cji
j ∀i ∈ I,

yi =
k−1∑
j=0

cji
j ∀i ∈ I \ I.

An easy property of Sx,I,I is that it has |F|k−t elements. This is summarised
in the following theorem.

Theorem 4. Let t, k, n ∈ N with t < k ≤ n. Let I ∈ Fn be an index set with
|I| = n and let I ⊂ I be such that |I| = t. Let the shares x = (xi)i∈I ∈ Ft be
fixed. Then

|Sx,I,I | = |F|k−t.

Proof. We know that if we have k fixed shares y1, . . . , yk ∈ F with corresponding
indices i1, . . . , ik ∈ F, then they are related to the coefficients of the sharing by
the k equations

yj =
k−1∑
l=0

cli
l
j .

Since this is k linear equations in the k unknowns c0, . . . , ck−1, we know that
there is a unique solution. It follows that the same is true given our t fixed
shares x if we fix a further k − t of them. But these additional k − t shares can
also be any values, and so we have |F|k−t choices for these, after which all of the
shares will be fixed. The result follows.

Next, we present a theorem about the relationship of the shares of a secret to
the coefficients of the associated polynomial. It is clear from the definition of the
shares that they are a linear map of the coefficients, but the following theorem
shows that the reverse is also true; the coefficients can be computed as a linear
map applied to some set of k shares. The proof can be found in Appendix C.

Theorem 5. Let x ∈ F and (xi)i∈I be a k-sharing of x for some index set I ⊂ F
with |I| = n ≥ k. Let the associated coefficients for the sharing be c0, . . . , ck−1.
Then for each R ⊂ I with |R| = k and j ∈ {0, . . . , k − 1}, there exist field

elements (λ
(j)
i )i∈I such that

cj =
∑
i∈R

λ
(j)
i xi.
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2.5 Discrete Logarithm Assumption

We define here a computational assumption that will be relevant to our random
key pair generation protocol. The assumption is a standard and common one
from the literature: that computing the discrete logarithm is hard. This is
formalised for our specific context as follows.

Assumption 1 (Discrete Logarithm). Let p be a prime such that p ≥ 2b where
b ∈ N. Let G be a group of prime order p with generator g and let F be
the associated finite field of integers modulo p. Then for every probabilistic
polynomial-time Turing machine T and uniformly random field element x ∈ F,
P(T (G, g, gx) = x) is negligible.

3 Security Model

In this section we will outline the security model and definitions that we will use
to prove that the presented protocols are secure. In general, we will consider
a malicious, rushing adversary with static corruptions. We also define the
adversary to be computationally bounded, i.e. so that it cannot compute discrete
logarithms, as in Assumption 1. In this paper these properties should be assumed
of the adversary unless specified otherwise. Further, we assume that each party
is connected to each other by a private point-to-point channel, and that these
channels allow for each party to verify that the message came from the specified
sender, using e.g. a cryptographic signature scheme.

The notion of security we will use is that of Canetti [6], which is based on
the idea of comparing a designed protocol to an ideal case that is secure by
definition. More precisely, we consider an n-party function f that takes as input
the inputs of each of the parties, and gives as output the outputs for all of the
parties; this defines what functionality we want our protocol to achieve. Then,
we define a protocol π which we want to “securely” realise f , and prove that it
is secure by comparing the “real-life model” in the presence of an adversary A
and the “ideal case”:

• Real-life model : The corrupted parties are controlled by the adversary A,
which learns their identities and inputs. The protocol π proceeds in rounds,
where in each round uncorrupted parties first follow π correctly and send
any messages they need to. Next, A receives any messages destined for
corrupted parties, and then decides what messages the corrupted parties
should send in that round. This process repeats each round until π has
completed execution. The parties then produce their output; uncorrupted
parties output their true output, while corrupted parties output a special
symbol ⊥ to indicate that they were corrupted.

• Ideal case: All parties hand their inputs for the protocol to an incorruptible
trusted party T which computes the ideal functionality f and then hands
each party their respective results. Each party produces their respective
output as in the real-life model.
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See the paper for more details [6]. An important property to note is that the
adversary gets to see the honest parties’ message in a given round before deciding
its own; this property is called rushing. We call an adversary t-limited if it
controls at most t parties.

If for each A that operates in the real-life model, we can construct an
adversary S in the ideal case such that for the random variable that represents
the information gathered by A and the outputs of the parties, S can construct an
output with the same distribution, then we will say that the protocol π is secure.
Canetti also proves that this security definition enjoys a composability property,
in that if a protocol π uses a secure subprotocol π′ as part of its execution,
then to prove π is secure one need only prove this when π′ has been substituted
by the associated n-party functionality f . Additionally, in this paper we will
consider malicious adversaries, which means that they can deviate arbitrarily
from the protocol and send arbitrary messages. Before the start of the protocol,
the adversary (this applies to both A and S) may also modify the inputs of the
corrupted parties in any way.

The random variable corresponding to the execution of the protocol π in
the presence of an adversary A is defined as follows. Denote by ADVRπ,A(x, z, r)
the output of A on running π with auxiliary input z and input x = (x1, . . . , xn)
with random input r. This output consists of its auxiliary input, random input,
corrupted parties’ inputs, corrupted parties’ random inputs, and all messages
sent and received by the corrupted parties during the execution of π. Denote
by EXECπ,A(x, z, r)i the output of party Pi at after running π. Recall that this
output will be ⊥ if Pi is corrupted. Then we have the following definition.

Definition 7. Let π be an n-party protocol and let A be a t-limited adversary.
Let x be some input for the parties, and z be some auxiliary input. Define
EXECπ,A(x, z) to be the joint random variable(

ADVRπ,A(x, z, r), EXECπ,A(x, z, r)1, . . . , EXECπ,A(x, z, r)n
)
,

where r is chosen uniformly randomly.

The auxiliary input z is used to prove the composability of the security
definition. It represents a possible state for A that might occur due to the
protocol being a subprotocol of a larger protocol, and so can include information
about previous executions up to that point. Similarly, we define the random
variable that corresponds to the execution in the ideal case with and adversary
S. Denote by ADVRπ,S(x, z, r) the output of S on running π with auxiliary input
z and input x = (x1, . . . , xn) with random input r.

Definition 8. Let f be an n-party function and let S be an adversary. Let x be
some input for the parties, and z be some auxiliary input. Define IDEALf,S(x, z)
to be the random variable(

ADVRπ,S(x, z, r), EXECπ,S(x, z, r)1, . . . , EXECπ,S(x, z, r)n
)
,

where r is chosen uniformly randomly.
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We will often refer to EXECπ,A(x, z) (or sometimes all parts of it excluding
the outputs of the parties) as the view of A running π with inputs x and z, as
this is what A “sees” during execution; particularly the messages. Similarly, we
often call the output of S the simulated view.

Definition 9. Let f be an n-party function and let π be an n-party protocol. We
say that π t-securely evaluates f if for any nonadaptive and t-limited adversary
A there exists a nonadaptive adversary S with running time polynomial in the
running time of A such that for all x and z

EXECπ,A(x, z)
d
= IDEALf,S(x, z).

Remark 1. While the auxiliary input z serves an important role in allowing for
the security definition to be composable, its presence in the individual security
proofs is not needed; since S is given z, it is trivial for it to include it in its
output. For this reason, we do not mention the auxiliary input in our security
proofs.

Remark 2. The definition presented is a simplified version of the one given in
Canetti’s paper. This is because the latter is made to be general over the different
possible levels of security: perfect security, statistical security and computational
security. It is also designed to be general over possibly infinite domains for the
inputs. However, in our case we only consider finite domains and perfect security,
so the definition is suitably simplified. Note that even though a protocol may
use a subprotocol that has only statistical or computation security, we can still
prove it is secure using perfect security, since perfect security implies statistical
security, which in turn implies computational security. For the protocols in this
paper we will prove perfect security since it is both the strongest result but also
more convenient.

The main difference of this definition of security when compared to earlier
models [11, 12, 13] is the combination of the notions of secrecy and correctness.
The former captures the idea that no information is gained by the adversary,
which corresponds to the distribution of the messages in the view. The latter
captures the fact that the protocol should correctly do what it is designed
to do, and this is captured by having the outputs of the parties in the view.
Thus, Canetti’s model captures both of these properties in the single equality
of Definition 9, whereas earlier models required two separate proofs for each of
the properties. Note that this difference is not merely cosmetic; see Canetti’s
paper [6] for examples and discussion of how a protocol that is intuitively insecure
can be proven to be secure in earlier models but is correctly identified as insecure
by Canetti’s security definition.

4 Cryptographic Primitives

In this section we briefly outline some cryptographic primitives that will be used
in our SMPC protocols.
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4.1 Public Key Encryption

For some protocols, we will assume the existence of a public key encryption
system. The precise security definition of the encryption is not important for
this context. We will denote the output of encryption of a message m using a
public key κ by Eκ (m).

4.2 Zero Knowledge Proofs

We will make use of general purpose zero knowledge (ZK) proofs in some of
our protocols. Specifically, we need non-interactivity, meaning that a prover
can create a single proof object that can be verified by a verifier without any
additional interaction. We borrow the definitions of such a system from [14].

Let R be a binary relation, such that we have elements (φ,w) ∈ R where
φ is called the statement and w is called the witness. We have the following
algorithms.

• (σ, τ)← setup(R): This is the setup that produces the common reference
string σ and simulation trapdoor τ for R.

• π ← prove(R, σ, φ, w): This is the proving algorithm that produces a proof
π for the statement (φ,w) ∈ R using σ.

• b ← verify(R, σ, φ, π): This is the verification algorithm that returns a
result b ∈ {0, 1} such that b = 0 signifies that the proof π for φ using σ
was rejected, and b = 1 signifies acceptance.

• π ← sim(R, τ, φ): This is the simulation algorithm that takes the trapdoor
τ and a statement φ and returns a proof π.

We require the common properties of completeness, perfect zero-knowledge
and computational soundness. They are summarised in the following definitions,
using the notation from [14].

Definition 10 (Completeness). Completeness states that an honest prover
should be able to convince an honest verifier of a true statement. Precisely, we
require that

P
[

(σ, τ)← setup(R)
π ← prove(R, σ, φ, w)

∣∣∣∣verify(R, σ, φ, π) = 1

]
= 1

Definition 11 (Perfect zero-knowledge). Perfect zero-knowledge states that a
proof does not leak any knowledge other than the truth of the statement. Precisely,
it must hold that for all (φ,w) ∈ R, auxiliary input z and any adversary A

P
[

σ ← setup(R)
π ← prove(R, σ, φ, w)

∣∣∣∣A(R, z, σ, τ, π) = 1

]
=

P
[
σ ← setup(R)
π ← sim(R, τ, φ)

∣∣∣∣A(R, z, σ, τ, π) = 1

]
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Definition 12 (Computational soundness). Computational soundness states
that it is impossible to prove a false statement. Specifically, let LR be the
language of statements such that there exists a matching witness in R. Then for
all adversaries A we require that

P
[

(σ, τ)← setup(R)
(φ, π)← A(R, z, σ)

∣∣∣∣ φ /∈ LR
verify(R, σ, φ, π) = 1

]
≈ 0

4.3 Consensus

To build our random number generation protocol, we will make use of a consensus
algorithm. A consensus algorithm allows a network of processes, some of which
may be faulty, to arrive at a joint decision value. The key properties of a
consensus algorithm that we will consider are those defined Buchman et al. [15].

1. Termination: Every nonfaulty process eventually decides on a value.

2. Agreement : No two nonfaulty processes decide on different values.

3. Validity : A decided value is valid, i.e., it satisfies a predefined predicate
denoted valid().

Note that it is not explicitly stated, but it is necessary for the function valid

to be global in the sense that every nonfaulty process computes the same result
for valid(v). This is important to keep in mind for the following, in which some
decision values will contain data encrypted for specific players, which of course
means only those specific players can decrypt this data and hence the associated
plaintext should not be used as a part of the checks in valid.

We define a specific protocol that uses consensus when generating global
(secret shared) random numbers, which we denote ρn,kRNG . The purpose of consensus
during the random number generation protocol is to pick a subset of players
that contributed correctly to the protocol. Thus a decision value will contain
shares from a subset of players along with ZK proofs that each of the sharings
is valid (these are needed because the shares will be encrypted for the target
players as they should be kept private).

The consensus protocol is defined as follows. Let the parties participating in
the protocol be {Pi}i∈I , such that each party Pi has a public and private key-pair

where the public key is denoted κi. Each party Pi has input c
(i)
0 , . . . , c

(i)
t−1, which

are the coefficients of a polynomial that is to be used for a threshold t sharing

of the number c
(i)
0 ∈ F. They then do the following to construct their input for

a consensus protocol ρ:

1. Create n shares
(
r
(i)
j

)
j∈I

from the coefficients c
(i)
0 , . . . , c

(i)
t−1, i.e.

r
(i)
j =

t−1∑
l=0

c
(i)
l jl ∀j ∈ I. (2)
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2. Obtain the encrypted values ei =
(
e
(i)
j

)
j∈I

, where e
(i)
j = Eκj

(
r
(i)
j

)
.

3. Create a ZK proof πi that attests to the validity of the sharing and
encryptions. Specifically, let R be the relation with elements (φ,w) where
the witness w consists of a private key for the encryption scheme and t
elements of F that represent the coefficients of a sharing. The associated
statement φ asserts that

• e(i)j = Eκj

(
r
(i)
j

)
for all j ∈ I.

• The values
(
r
(i)
j

)
j∈I

constitute a valid and consistent sharing of some

value in F (in this case, that value is c
(i)
0 ), i.e. that Eq. (2) holds.

Then πi ← prove(R, σ, φ, w) where (σ, τ)← setup(R).

A possible decision value for ρ is a set {(ei, πi)}i∈I where I ⊂ I. The predicate
is validRNG, which is true precisely when |I| > t and verify(R, σ, φ, πi) = 1 for
all i ∈ I. The output for each party is the decrypted set of shares which were

encrypted for their public key; namely the output for party Pi is (r
(j)
i )j∈I .

Part of the use of the ZK proofs here is to achieve the goal of having verifiable
secret sharing, for which the more common solution is to use more specialised
(and hence usually more efficient) techniques such as that of Feldman [16] or
Pedersen [7]. The reason that these solutions were not used is to weaken the
synchronicity requirements but also reduce the number of rounds of commu-
nication. Using the standard solutions allows each party to identify when a
dealer has not consistently shared their secret, but each party needs to be aware
of this and hence they need to agree on dealers that are faulty. This usually
requires additional rounds of broadcasting complaints (if there are any), and
often doing so using a secure broadcast channel. Using the more powerful ZK
proofs, in which it is proved that all of the encrypted shares are consistent,
allows each party to check that every other parties’ share is correct in the course
of the consensus algorithm. This means that upon achieving consensus, no
further coordinating or complaint broadcasting is needed as the only decision
values that are selected are those for which the required threshold of parties
agreed that valid(R, σ, φ, πi) succeeded. Using ρn,kRNG thus only introduces the
synchronicity required for the consensus algorithm, which for example in the
case of Tendermint [15] is only partial synchronicity.

5 ECDSA Signature Algorithm

The ECDSA algorithm for an elliptic curve is defined as follows. Let an elliptic
curve defined over the field Fp be given such that it has a generator G of prime
order n. Let d ∈ [n− 1] be a private key with associated public key dG, and let
m be the message to be signed. Let z be a hash of m such that the bit length
of z is the same as the bit length of n. Then the following steps are used to
generate the signature (r, s) of m under the private key d:
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1. Pick k uniformly randomly from [n− 1].

2. Compute (x, y) = kG.

3. Let r = x mod n.

4. Compute s = k−1(z + rd) mod n.

5. Output the signature (r, s).

Note that this is the same standard as in [3] except it is adapted for use with
elliptic curves. To implement this signing algorithm in SMPC, the parties will
need to have shares of the private key d such that no small enough subset knows
d. This can be achieved by using a random key-pair generation algorithm. The
parties will also need to generate k along with the associated public key kG,
which can also be achieved using a random key-pair generation protocol. Next,
the parties will need to perform some arithmetic operations on the shares of
d and k and the hash of the message z. Arithmetic operations on shares can
be performed locally when the operation is addition or when multiplying by a
public (not shared) value. This means that computing r as well as z + rd can be
done locally. The two important operations are thus inverting k, and performing
a multiplication of the shared values k−1 and z + rd.

5.1 Comparison to [3]

Here we will make an explicit comparison of our approach to [3]. The way that
our threshold signature protocol is carried out is the same as [3] when viewed
as the composition of subprotocols. That is, if we consider the subprotocols
of random number generation (RNG), random zero generation (RZG), random
key-pair generation (RKPG), multiplication of shares (including opening the
result) and inversion of a shared value, then we use these subprotocols in the
same way as in [3] to compute the signature, with the following small differences:

• We target the ECDSA algorithm adapted for elliptic curves. The difference
is that [3] instead computes

r =
(
gk

−1

mod p
)

mod q

s = k(m+ xr) mod q,

where p, q are primes such that q | p − 1 and g is an element of order
q in the multiplicative group of integers modulo p, Z∗p. This just means
that some values live in different sets, e.g. generating a random key-pair
generates a random shared value k ∈ [q] but the public value gk is in the
group generated by g ∈ Z∗p, whereas our public value will be a point on
the elliptic curve.

• Order of subprotocols. When computing a signature, we will need to do
two multiplications (one is needed during inversion, and then one for the
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final step in computing s) and for this we will need two random sharings
of zero, obtained by calling RZG twice. In [3] these two calls to RZG are
performed near the start of the protocol, to be used later. On the other
hand, in our protocol we will include them as a part of the multiplication
subprotocol. However this has no significant affect on the proof (this is true
both in [3] and in this paper where we use Canetti’s security framework).
We make this difference in this paper so that we can prove the security of
multiplication in Canetti’s security framework which allows multiplication
to be more easily reused in other contexts as a single securely composable
protocol.

The only other important differences between the protocol presented in
this paper and that of [3] is how the subprotocols for RNG, RZG, and RKPG
are defined. These subprotocols are specified in Section 6.2, Section 6.3 and
Section 6.4 respectively.

5.1.1 Security

One question that arises is the following: if the protocol in this paper has these
differences to the protocol in [3], does the proof of security presented in [3]
still apply here? We answer in the affirmative. To see why, we will consider
the differences in turn. First, we turn our attention to the use in this paper
of different realisations of the subprotocols RNG, RZG and RKPG. In this
paper, we will prove that our realisation of these subprotocols are secure under
Canetti’s definition of security [6]. Notice that the definition of security used
by [3] is based on older works [11, 12, 13] which provide a weaker definition.
Specifically, Canetti’s definition combines both the messages sent by the parties
as well as the outputs of the honest parties as part of the view, whereas the
older models only include the messages in the view (and so require separate
proofs for correctness and secrecy as seen in [3]). This means that our security
proofs will imply security in the weaker definition used by [3]1. However, in this
paper we prove that these subprotocols are secure individually and then make
use of the composability property of Canetti’s security definition to use them
together, whereas in [3] the proof of security is given for the entire signature
protocol, instead of its constituent parts. We argue that this still means that the
proof in [3] is valid if we substitute our subprotocols, because we can take the

simulators used in the proofs of security of πn,kRNG , πn,kRZG and πn,kRKPG and use them to
make the same arguments as their relevant parts in the proof of security in [3].
In those places in the proof where the simulator needs to cheat to cause the
output of one of the subprotocols to be a specific value, we note that this can be
achieved with the simulators in this paper due to the stronger notion of security
under which they are proven.

1Note that in [3] there are multiple proofs for different adversary models. Here we are
specifically interested in the proof corresponding to malicious adversaries, which is for protocol
DSS-Tresh-Sig-2 in their paper, as this corresponds to our adversary model.
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6 SMPC Primitives

In this section we will define the primitives which constitute our SMPC protocols
and prove their security. It is clear that security as defined in Definition 9
trivially applies when a protocol is “local”; i.e. does not involve any exchange of
messages. This means that we need only consider proofs of security for those
protocols that involve sending messages. In our case, these protocols are open
(Section 6.1), random number generation (Section 6.2), random zero generation
(Section 6.3), and random key-pair generation (Section 6.4).

6.1 Open

When we reveal the secret corresponding to a sharing, we call this operation an
Open. We will present two protocols for this operation, each warranting their
use in different situations. The difference between them lies in how the ideal
functionality is defined; one will provide security of the input shares, and the
other will not.

Probably the most obvious ideal functionality for open would be defined as
follows: f takes as input the shares of the secret from each party and gives as
output the corresponding secret s to each party. However, if we were to try to
achieve this with the simplest and most obvious protocol, everyone broadcasting
their share and then reconstructing, we would not be able to prove security
against Definition 9 because any simulator, knowing only the corrupted shares
and the secret, would not be able to produce the shares of the honest parties
which it would have to as these are messages that are sent during the protocol.
The interpretation of this is clear: this protocol is not secure because it leaks
private information (the input shares) from the honest parties, or alternatively,
because the ideal functionality specifies that this private information is not
revealed. The two solutions for these two perspectives leads to the two different
protocols as follows.

First, from the perspective that the simple broadcast protocol should not
reveal the input shares, the solution is to improve the protocol so that this
information isn’t revealed. One way that this can be achieved is by first generating
a random k-sharing of 0 ∈ F and adding that to the shares before broadcasting
them; now the messages sent during the protocol are for a random sharing of the
secret, as opposed to the specific sharing that the parties started the protocol
with, and a simulator can now generate these messages with the right distribution
knowing only the secret. This solution will be used in our multiplication protocol,
as in [3]. The reason that this will be needed here is that after multiplying our
shares, they will now be points on a degree 2k polynomial that is known to
be the product of two k degree polynomials. This causes there to be enough
structure in the shares that if they are revealed one can often efficiently find the
original two secrets.

Second, from the perspective that the ideal functionality is too restrictive,
we can modify it to also output the shares themselves along with the secret; a
simulator for this ideal functionality can now easily produce an appropriate view
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for the simple broadcast protocol. We will not use this protocol in this paper,
but it is included anyway for completeness as the security proof is trivial.

6.1.1 Reed-Solomon Decoding

With the above considerations in mind, we will define two protocols for open, one
for each of the cases. In both cases, we will use a Reed-Solomon (RS) decoding
technique, such as Berlekamp-Welch [17] or Gao’s [18], to remain fault tolerant
in the presence of corrupt parties broadcasting incorrect shares. This idea was
first introduced in [19]. For an (n, k) RS code (i.e. n, k Shamir secret sharing)
these algorithms are able to detect when there are up to d = n− k + 1 errors
and correct up to bd2c errors2. Notice that RS decoding allows us to recover the
underlying polynomial, and so this means that we not only obtain the secret for
our sharing but also all of the other shares of every other party. More precisely,
we can define an RS decoding algorithm as having the following input/output
relationship:

• Input: A codeword (i.e. shares) (x1, . . . , xn) ∈ Fn.

• Output: The message polynomial c0+c1x+· · ·+ck−1xk−1, i.e. a polynomial
of degree k − 1 that satisfies

xi =
k−1∑
j=0

cji
j ∀j ∈ [n] ,

or “Decoding failure”.

Note that the input for the RS decoding algorithm is all of the shares of the
parties. If we were to näıvely achieve this in practice, we could have a timeout
for receiving all of the shares, and then once the timeout has expired we could
set the missing shares to arbitrary values and then run the protocol. However,
we aim to avoid timeouts, and so we will present a simple algorithm that can
be used to reconstruct a secret using RS decoding that avoids the need for a
timeout. The idea is as follows. As soon as a party has at least n− bd2c shares,
the decoding algorithm will be able to successfully recover the secret. This is
achieved by setting the yet to be received messages as any value. If there are no
more than bd2c adversaries (and this category also includes offline/unresponsive
players), then the round is guaranteed to terminate according to any termination
assumptions of only the honest players. This means that in practice we will not
need to wait for all messages (which is not lively) and also will have no need for
timeouts.

Concretely, the following algorithm describes how the honest parties can
reconstruct the secret during an open using RS decoding.

1. Wait until n− bd2c shares have been received.

2Note that these algorithms are also able to locate the errors when they are corrected,
which in our context means that we would be able to identify corrupt players.
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2. Starting from the previous step and repeating on every new share until the
RS decoding algorithm succeeds: set the shares of the parties for which no
shares have yet been received as 0, and run the reconstruction algorithm.

We will explain why this will eventually allow the reconstruction of the secret
value in the presence of no more than bd2c corrupted parties. First, since
we assume that we will receive all messages from the honest parties, we are
guaranteed to receive at least n−bd2c messages. Next, note that once we have all
of the honest parties’ shares, the RS decoding algorithm is guaranteed to succeed
by definition. These two facts ensure that the reconstruction will eventually
terminate successfully. If any corrupted parties shares have been modified and
are received before all of the honest parties’ shares, this will simply result in
some initial decoding failures.

This technique for RS decoding without using timeouts is mainly a practical
consideration, and is included as it aligns with the motivations for the design of
our protocols. For the purposes of the security proofs for open, however, this
technique is not needed. This is because in Canetti’s security framework, the
protocols proceed in rounds, and everyone receives the messages for each round
before moving on to the next round. This means that honest parties will have all
honest shares at the end of the round in which they all send them, and with all
honest shares they need only run the RS decoding algorithm once to successfully
reconstruct the secret (possibly setting missing malicious shares to an arbitrary
value).

6.1.2 Share Revealing Open

The protocol implementing the basic ideal functionality (that outputs the secret

as well as all of the input shares) fn,kOPEN is denoted by πn,kOPEN and is defined as
follows.

1. Each party Pi broadcasts their input share xi.

2. Each party performs the reconstruction of the secret using a suitable RS de-
coding algorithm and outputs the result, along with the other reconstructed
shares.

Theorem 6. Let t ≤ n−k+1
2 . Then the protocol πn,kOPEN t-securely evaluates fn,kOPEN.

Proof. Since the only messages sent are the input shares and these are included
in the output of the trusted party, the proof is trivial. The only thing to note is
that the output needs to include the input shares of all parties, including those
corrupted parties that may broadcast arbitrary values. This is easily overcome
by using an RS decoding technique and noting that the restriction on t ensures
that it will always be possible to reconstruct their shares.

6.1.3 Share Hiding Open

The protocol implementing the stricter ideal functionality fn,kSO is denoted by

πn,kSO and is the same as the simple version, except before revealing shares for
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reconstruction, the sharing is randomised by adding a random sharing of 0 ∈ F
first. The protocol for generating this randomising sharing, πn,kRZG , is defined in

Section 6.3. The protocol πn,kSO is defined as follows.

1. The parties participate in πn,kRZG to get a share of zero zi.

2. Each party Pi broadcasts their corresponding share xi + zi.

3. Each party performs the reconstruction of the secret using a suitable RS
decoding algorithm and outputs the result.

Theorem 7. Let t be such that both t ≤ n−k+1
2 and t < k−1. Then the protocol

πn,kSO t-securely evaluates fn,kSO .

Remark 3. We will see later that if we invoke the multiplication protocol with
two input sharings that have reconstruction threshold k, we will need to invoke
πn,2kSO . This means that if k is a large enough fraction of n, the restriction on
t will be due to the RS decoding restriction, t ≤ n−k+1

2 , as opposed to the
sharing restriction t < k − 1. For example, when k = n

3 , we will require that
t < n

6 . One way to overcome this limitation is to use verifiable secret sharing
(e.g. Pedersen’s [7]), which allows each party to determine if a given share is valid
in isolation from the others. Thus if the parties have the Pedersen commitments
for the shares they are opening, RS decoding is not needed and we will only
have the sharing restriction t < k − 1. To see how this can be applied in the
case of multiplication, see [3] and [20]. We leave making this improvement to
our protocols as future work.

Remark 4. Note that we require t < k − 1 instead of the usual k. This is
because when we open, every party learns the secret, which we recall is the share
corresponding to index 0 ∈ F. With this extra share, the adversary can actually
reconstruct all of the original shares (if we have the worst case t = k − 1), which
we want to avoid.

Proof. We will give a high level proof here. Full mathematical details can be
found in Appendix D.

The idea of the proof is as follows. The simulator S needs to construct the
view so that it is consistent with the output secret being s. Since πn,kSO randomises
the sharing before reconstructing, these shares should look random and so S can
simply construct a random sharing (yi)i∈I of s for that part of the view. Now,
S needs to make sure that the rest of the view is consistent with the real world
view: the corrupted parties inputs (xi)i∈Ic and random shares of zero (zi)i∈Ic
need to satisfy the relationship xi + zi = yi for each i ∈ Ic. Since the input
shares are fixed, S simply defines zi = yi − xi for each i ∈ Ic. This will have the
right distribution because the sharing of s was chosen randomly and t < k − 1.
Define the simulator adversary S as follows.

1. Let the output from the trusted party be s (by definition it will always
be the secret corresponding to the sharing x). S begins by constructing a
random sharing (yi)i∈I of s.
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2. S now defines

zi = yi − xi ∀i ∈ Ic. (3)

3. S now runs A after giving it (zi)i∈Ih and (yi)i∈Ih to get the messages
(mi)i∈Ic that A sends in the broadcast round.

4. S then outputs

(zi)i∈Ic , (mi)i∈Ic , (yi)i∈Ih

as the generated view.

We will now justify why the view of S, IDEALπn,k
SO ,S(x, z), has the correct

distribution. First, in the real world view the shares of zero (zi)i∈Ic will look
completely random as there are less than k− 1 of them, whereas they are shared
with threshold k − 1. In the simulated view this is also true, based on their
definition in Eq. (3) and the fact that (yi)i∈Ic are also completely random by
construction. Next, the messages from the adversary (mi)i∈Ic will have the
correct distribution because they were obtained by directly running A and all of
the information that A has obtained up until this point, namely (zi)i∈Ic , has the
right distribution. Finally, the last element has the correct distribution because
of its construction and the relationship Eq. (3).

As for correctness of the output, this is an easy consequence of the restrictions
on t. These restrictions ensure that the honest parties can correctly reconstruct
the secret using RS decoding.

6.1.4 Directed Open

The protocols πn,kOPEN and πn,kSO reveal the shared secret to all players. However,
sometimes we will only want to reveal the secret to a specific player. This occurs
in the protocol πn,kRNG . In this case we use a directed open protocol. The only
difference in this case is that instead of sending the shares to everyone, each
player sends their share to the specified player only. We denote the directed
version of πn,kOPEN as πn,k,iDO and the directed version of πn,kSO as πn,k,iSDO , where in
each case i ∈ I is the index of the player which outputs the secret. The ideal
functionalities fn,k,iDO and fn,k,iSDO are also defined correspondingly.

The security of these directed open protocols is summarised in the following
two theorems; they enjoy the same security as their undirected counterparts.
The proofs are almost identical and so are omitted here.

Theorem 8. Let t ≤ n−k+1
2 . Then the protocol πn,kDO t-securely evaluates fn,kDO .

Theorem 9. Let t be such that both t ≤ n−k+1
2 and t < k−1. Then the protocol

πn,kSDO t-securely evaluates fn,kSDO .

22

May 1st, 2020 DRAFT



6.2 Random Number Generation

Generating shares of a uniformly distributed (but unknown to all parties) random
number is key for many SMPC protocols. In this section we will describe
how we achieve this and prove the security of our protocol. Security requires
that the output cannot be influenced, and to construct a protocol that meets
this requirement we will first create a protocol that does not meet all of the
requirements for our security framework. We will then utilise this in creating a
fully secure protocol.

6.2.1 Biased RNG

The goal of random number generation is for each of the parties to end up with
shares of a global random number that none of the parties know. This technique
was first introduced by Pedersen [7] and works as follows. Each player begins
by generating a random number and creating shares of it. These shares are
then sent to all other players, after which each player should have a share of
the random numbers of the other players, as well as one of their own. These
shares are then summed to produce a single share of the sum of each players
random number. If at least one of the players that participated picked their
random number uniformly randomly, then the global random number will also
be uniformly random.

The main challenge of using this protocol in the presence of malicious adver-
saries is that of having the honest parties select the same subset of shares to use
in the sum; not doing so would lead to the honest parties holing an inconsistent
sharing. The way that a corrupted party can cause this to happen is simply
sending their shares to a subset of the parties, and not sending any to the others.
One possible solution to this is to have parties also send acknowledgement mes-
sages upon receiving correct shares on a secure broadcast channel [3]. However,
since we are not using a secure broadcast channel we use an alternative solution:
a consensus protocol. The idea is that once consensus is achieved, all of the
honest parties will agree on which subset of shares from other parties to include
in the sum, and will therefore end up with consistent shares of the same global
random number. The protocol is denoted πn,kBRNG proceeds as follows:

1. For all i ∈ I, player Pi picks ri ∈ F uniformly randomly and creates shares
(ri,j)j∈I . Denote the coefficients of the random polynomial that determines

this sharing by c
(i)
0 , . . . , c

(i)
t−1, so that ri = c

(i)
0 and

ri,j =

t−1∑
k=0

c
(i)
k jk.

2. Each player Pi then participates in ρn,kRNG using the generated coefficients,

obtaining the output (rj,i)j∈I where I ⊂ I is defined implicitly by ρn,kRNG as

the set of players whose shares were agreed to be used by ρn,kRNG .

23

May 1st, 2020 DRAFT



3. The final output of player Pi is

yi =
∑
j∈I

rj,i.

If we attempt to prove that this protocol (or similar ones such as [3]) Canetti’s
security model, we encounter a problem. This problem arises when we define the
most obvious ideal functionality for πn,kBRNG. This obvious ideal functionality fn,kRNG

is: each party gives no input and the output is a uniformly random sharing of a
uniformly random number, the output for each party being their respective share.
The key here is that we have specified that not only is the global random number
uniformly random, but also the sharing of this random number is random; each
possible sharing of the random number is equally as likely. Unfortunately, this
latter condition is easily thwarted by a rushing adversary, as they can observe
the honest parties’ shares first, and then pick their random numbers’ associated
sharings to be such that their final shares (the sum of the shares from the chosen
subset of parties) are biased. For example, when using Tendermint for the
consensus protocol, the proposer of a block may be a corrupted party. If this
is the case, they are in fact able to realise the rushing property and can pick
their own sharing to be such that they end up with any share of their choosing.
This clearly violates the property that the sharing of the random number is
itself random. In order to overcome this technical difficulty3, we will not prove
that πn,kBRNG is secure in Canetti’s security framework but rather just prove its

key properties that will be relevant when we use πn,kBRNG to construct an unbiased

protocol πn,kRNG that will capable of realising the ideal functionality fn,kRNG .
We are interested in the following properties.

• Agreement : All honest parties output consistent shares of a field element.

• Global randomness: The secret corresponding to the output shares is
uniformly randomly distributed.

• Secrecy : No subset of less than k players knows anything about the shared
secret other than the fact that it is uniformly randomly distributed. Further,
the shares of the honest parties are uniformly random, constrained only by
the fact that they are consistent with the shares of the corrupted parties.

Theorem 10. Let A be a t-limited adversary where t < k. Then protocol πn,kBRNG

satisfies agreement, global randomness and secrecy.

Proof. We will prove each property in turn.

• Agreement : The fact that all honest parties will agree on the same subset
I ⊂ I of parties whose shares are to be included in the final sum is

3There may be a clever way to modify the ideal functionality so that it still faithfully
represents the goal of random number generation but allows this biasing of the shares by the
adversary. However, the authors are not aware of a way to do this, or whether it is safe in
general to allow the biasing of the shares.
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guaranteed by the termination and agreement properties of the consensus
protocol. The consensus protocol also ensures (by dint of the validity
property) that for each i ∈ I all honest parties will receive consistent
shares of a field element chosen by Pi. It follows that when each honest
party obtains its output by locally summing each of the shares that came
from parties in I, this sum will also be part of a consistent sharing of the
sum of the secret random numbers.

• Global randomness: Since t < k and k sharings are used in the final sum,
at least one of the secrets used in the sum will have been generated by an
honest party and hence be uniformly random. The property then follows
from Corollary 1.

• Secrecy : The first property required for secrecy is straightforward to show.
Since t < k, the corrupted parties never receive enough shares of any of
the honest parties’ contributions, of which there will be at least one since
|I| > t. The result then follows from the basic properties of Shamir secret
sharing.

Now we will show the second property required for secrecy: that the shares
of the honest parties appear uniformly random, given the constraints.
Let yc = (yi)i∈Ic and yh = (yi)i∈Ih , and let x = (xi)i∈Ih ∈ Syc,I,Ic be
arbitrary. Let m ∈ I be such that Pm is honest. This is always possible
because |I| > t. Let K ⊂ Ih be such that |K| = k− t. We will need to use
the fact that (rm,i)i∈K is independent from (rj,i)i∈K for all j ∈ I \ {m}.
To see this, realise that (rm,i)i∈Ic∪K is uniformly randomly distributed in

Fk, which follows from Theorem 3. Then the independence follows from
this and the fact that the adversary chooses its shares knowing only the
subset (rm,i)i∈Ic of the shares from Pm.

Now, from Theorem 4 we know that |Syc,I,Ic | = |F|k−t. Thus, we want to
show that

P(x | yc) = |F|t−k.

But again, we know that x will be completely determined by yc and any
k − t of the shares in x, so we can write

P(x | yc) = P((xi)i∈K | yc). (4)

Since (rm,i)i∈K is independent from (rj,i)i∈K for all j ∈ I \ {m}, it follows
that we can apply Corollary 1 to see that (yi)i∈K is uniformly distributed

in Fk−t. This fact combined with Eq. (4) gives the desired result.

6.2.2 Unbiased RNG

Unbiased random number generation is a protocol πn,kRNG that generates a global
random number that is unknown to all parties, but for which the parties hold
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shares. It can be described by the n-party function fn,kRNG which takes no input
from the parties, and gives output that is n shares of a uniformly random sharing
of a uniformly random number r (unknown to all parties) with reconstruction
threshold k, giving each share to the corresponding party.

To create the unbiased protocol πn,kRNG from the biased protocol πn,kBRNG the idea

is simple. Run πn,kBRNG k times, so that each of the random secrets represents a
coefficient of a uniformly random polynomial p. Then, compute Pi’s share of p(i)
for each i ∈ I by a linear combination of the shares of the k coefficients, and
open these resulting shares of shares to each corresponding party using a directed
open. Since creating the shares of p(i) is a linear combination of the coefficients,
this can be computed on the shares locally. The protocol is as follows.

1. The players invoke πn,kBRNG k times. Let the k output sharings be denoted

by
(
r
(1)
i

)
i∈I

, . . . ,
(
r
(k)
i

)
i∈I

, where player Pi receives the shares r
(j)
i for

all 1 ≤ j ≤ k. These represent shares of the coefficients c0, . . . , ck−1 of a
random degree k − 1 polynomial p.

2. Each party Pi locally computes

ri,j =

k−1∑
l=0

r
(l)
i jl

for all j ∈ I. This defines the sharings (ri,j)i∈I for each j ∈ I which are
shares of rj where

rj =

k−1∑
l=0

clj
l.

That is, rj = p(j), or in other words the share for party Pj corresponding
to p.

3. The players invoke πn,k,jDO n times: for each j ∈ I, rj is opened towards
party Pj . Each party Pj then finishes by outputting rj .

Theorem 11. Let k > t. Then the protocol πn,kRNG t-securely evaluates fn,kRNG .

Proof. We will present a high level proof here. Full mathematical details can be
found in Appendix E.

The idea behind the simulator is as follows. The simulator can run the
protocol as usual up until step 3. At this point, A does not know what the
secrets for the random sharings are, and the honest parties shares will be
uniformly random conditioned on the fact that they are consistent with A’s
shares. This allows the simulator to simply extend the corrupted parties’ shares
(which are known by the simulator since it holds enough shares to reconstruct
them) to valid random sharings of the target output shares, and this will have
the correct distribution.

The simulator is defined as follows.
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1. The trusted party is invoked first. Let the output shares of the trusted
party be (yi)i∈I .

2. S runs A and acts on behalf of the honest parties for Step 1. In doing

so, S learns the biased shares
(
r
(j)
i

)
j∈[k−1]0

for each i ∈ Ic, i.e. for each

corrupted party.

3. S constructs the honest parties’ shares

((
r
(j)
i

)
i∈Ih

)
j∈[k−1]0

as follows.

First, S picks random coefficients (ci)i∈[k−1]0
that are consistent with the

target shares (yi)i∈Ic , i.e. S picks uniformly randomly from the set(ci)i∈[k−1]0
∈ Fk

∣∣∣∣∣∣yi =
k−1∑
j=0

cji
j ∀i ∈ Ic

 .

Next, the honest parties’ shares are chosen at random under the condition

that
(
r
(j)
i

)
i∈I

is a consistent sharing of cj for each j ∈ [k − 1]0. Precisely,

the shares are chosen uniformly randomly from the set
((

r
(j)
i

)
i∈Ih

)
j∈[k−1]0

∈ Fk(n−t)
∣∣∣∣∣∣
∀j ∈ [k − 1]0
∃(c′l)l∈[k−1]
∀i ∈ I

: r
(j)
i = cj +

k−1∑
l=1

c′li
l

 .

We will justify why S produces a view with the same distribution as in the
real world case. The parts of the view that consist of messages that the corrupted
party sends should have the correct distribution as they are generated by running
a copy of A directly, and by ensuring that the preceding information that A
gains has the right distribution. Also, the messages that the corrupted parties
receive from the invocations of πn,kBRNG will clearly have the right distribution as

they are generated by S invoking πn,kBRNG directly, acting on behalf of the honest
players. Thus the two important parts of the view that we need to make sure
have the right distribution are the messages the corrupted parties receive during
the directed opens, and the output shares. Since the latter is determined by
the former, we need only consider the former (messages received during the
directed opens). In the real world view EXECπn,k

RNG ,A
(x, z), these are just uniformly

random shares of uniformly random numbers conditioned on the fact that they
are consistent with the corrupted parties shares. This follows from the fact that
this is true for the honest parties’ shares from πn,kBRNG (from the secrecy property),
and that the shares in the directed opens are just linear combinations of these
shares. In the ideal case view IDEALπn,k

RNG ,S
(x, z), these shares are constructed

by working backwards from the output shares. Since the output sharing is
uniformly random, it follows that the coefficients (ci)i∈[k−1]0

that S constructs

(which correspond the random numbers for the k invocations of πn,kBRNG) will also
be uniformly random. When S extends the corrupted parties’ shares to open
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to these values, it does this by picking uniformly randomly from the possible
sharings, and this ensures that the distribution will be the same as in the real
world view.

6.3 Random Zero Generation

Random zero generation is almost the same as random number generation as
in Section 6.2, except instead of obtaining shares of a global random number,
the parties obtain a sharing of 0 ∈ F. Specifically, the ideal functionality fn,kRZG

takes no inputs and outputs to each party Pi a share zi of 0 ∈ F, such that this
sharing is uniformly randomly distributed. The protocol is also almost the same
as πn,kRNG , except that instead of generating k random shared coefficients, we only
generate k − 1 because our secret (constant term in the polynomial) is fixed and

not random. This is made precise in the following protocol πn,kRZG :

1. The players invoke πn,kBRNG with no input k − 1 times. Let the k − 1 output

sharings be denoted by
(
r
(1)
i

)
i∈I

, . . . ,
(
r
(k−1)
i

)
i∈I

, where player Pi receives

the shares r
(j)
i for all 1 ≤ j ≤ k−1. These represent shares of the coefficients

c1, . . . , ck−1 of a random degree k − 1 polynomial with a zero constant
term.

2. Each party Pi locally computes

ri,j =
k−1∑
l=1

r
(l)
i jl

for all j ∈ I. This defines the sharings (ri,j)i∈I for each j ∈ I which are
shares of rj where

rj =
k−1∑
l=1

clj
l.

That is, rj is the share for party Pj corresponding to the polynomial with
coefficients c1, . . . , ck−1.

3. The players invoke directed open n times: for each j ∈ I, rj is opened
towards party Pj . Each party Pj then finishes by outputting rj .

The security theorem and proof for πn,kRZG is nearly identical to that for πn,kRNG ,
and so is omitted.

Theorem 12. Let t < k − 1. Then the protocol πn,kRZG t-securely evaluates fn,kRZG .

Remark 5. Note that the requirement on t is that it is less than k−1, as opposed
to k as was the case for πn,kRNG . This is because we are generating a sharing of
a known, fixed field element which gives one extra share of information to the
adversary (recall that the secret of a sharing is equal to the share corresponding
to index 0 ∈ F).
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6.4 Random Key-pair Generation

Random key pair generation is again very similar to random number generation
defined in Section 6.2, except instead of only obtaining shares of a global random
number, the parties also obtain the public key that corresponds to the shared
random number (private key). Specifically, the ideal functionality fn,kRKPG takes no
inputs and outputs to each party Pi a share xi of some uniformly random x ∈ F
and y such that y = xG ∈ G where G is a group with generator G, written with
additive notation. Additionally, to enable the proof of security to work each
party will also output xiG for each i ∈ I. This modification will be discussed

after presenting the passively secure protocol πn,kRKPG

′
for fn,kRKPG. We begin with this

passively secure protocol and then discuss how it can be augmented to achieve
security against malicious adversaries later. The protocol is defined as follows.

1. The parties invoke πn,kRNG , so that party Pi receives the share xi.

2. Each party Pi sends xiG to every other party.

3. Each party then reconstructs xG “in the exponent”, along with xiG for
each i ∈ I. These, along with the share xi constitute the output of the
protocol for player Pi.

The reason that the public values xiG for each i ∈ I are included in the
output for each party is to allow the simulator to construct a consistent view. If
the simulator did not know these values, then under Assumption 1 it would have
no hope of constructing gi ∈ G such that gi = xiG for each i ∈ Ih. However, for
the same reason the discrete logarithm problem also implies that learning each
gi should not be a concern, and so we are happy to include them in the output
of the protocol. We will formalise this reasoning somewhat after presenting the
security theorem.

Theorem 13. Let k > t. Then the protocol πn,kRKPG

′
t-securely evaluates fn,kRKPG in

the presence of a passive adversary.

Proof. The proof is straightforward; since everything in the view of the adversary
is contained in the output of the trusted party, and since the adversary is passive,
constructing a simulated view from this trusted output is trivial.

We now argue that for a k-sharing of x ∈ F, knowing a subset of less than k
of these shares and xiG for all shares xi, as well as knowing xG, it is not possible
to discover x if the discrete logarithm problem is hard. This is summarised in
the following theorem.

Theorem 14. Let G be a group of size at least 2b with generator G and prime
order, such that F is the finite field associated with this prime. Let x ∈ F be
uniformly random, and x1, . . . , xn be a uniformly random k-sharing of x where
k, n ∈ N and k ≤ n. Let t ∈ N and I ⊂ [n] be given such that t < k and |I| = t.
Suppose that a polynomial time Turing machine D takes as input G, G, (xi)i∈I ,
(xiG)i∈[n] and xG, and outputs z ∈ F. Then if Assumption 1 holds, it follows

that for all such D, P(z = x) is negligible in b.
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Proof. As is standard for these kinds of results, we will proceed by contradiction;
assume that there exists D that outputs z such that P(z = x) is non-negligible
in b. We will show how this can be used to solve a target instance of the discrete
logarithm problem. To this end, let y ∈ G be arbitrary. Pick t independent
and uniformly random elements of F x1, . . . , xt, and k − t− 1 independent and
uniformly random elements of G, labelled gt+1, . . . , gk−1. Similarly label gi = xiG
for each i ∈ [t]. Also extend the labels of xi so that for i ∈ {t + 1, . . . , k − 1}
xi is the unique value such that we have gi = xiG and also define x0 to be the
unique value that satisfies y = x0G. Note that these values are well defined but
not known by any polynomial time Turing machine, they are merely defined for
convenience of exposition. From Theorem 5 we know that there exist values

λ
(i)
0 , . . . , λ

(i)
k−1 such that

ci =

k−1∑
j=0

λ
(i)
j xj ∀i ∈ [k − 1]0 ,

where c0, . . . , ck−1 are the uniquely defined coefficients that correspond to a
k-sharing that is consistent with the shares x0, . . . , xk−1. Using these values we
can compute

ciG = hi =

k−1∑
j=0

λ
(i)
j gj

for all i ∈ [k − 1]0. This in turn allows us to compute the remaining shares in
the exponents; we can compute

gi =
k−1∑
j=0

ijhj ∀i ∈ {k, . . . , n}.

By construction, the shares corresponding to g1, . . . , gn are a consistent sharing
of x0 and agree with the subset x1, . . . , xt. We may now run D with input G, g,
(xi)i∈[t], (gi)i∈[n], and y. The output is z where P(z = x0) with non-negligible
probability. Since y = x0G, this completes the proof.

We now discuss how to augment πn,kRKPG

′
to be secure in the presence of a

malicious adversary. This is not too difficult to achieve; the only part of the
passively secure protocol in which the adversary can send (modified) messages is
in step 2. This can hinder the reconstruction of the global public key and also
the public keys corresponding to the shares if there is no way to detect that these
values are incorrect. Thus, we need only include a way to ensure that honest
parties can detect correct values, and after receiving k correct values they will be
able to perform the reconstruction. To achieve this required detection, we will
augment πn,kRNG to output, along side the usual random shares, a perfectly hiding

commitment to each of the shares of the parties. Then, πn,kRKPG

′
is augmented

by also submitting in step 2 a zero knowledge proof from a ZK scheme with
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completeness, perfect zero knowledge and computational soundness that the
value they sent corresponds to the commitment to their share. This will enable
honest parties to detect which sent values are correct. The associated simulator
for the proof would then be able to work as previously, except to generate the
ZK proof messages it can leverage the perfect zero knowledge property. The
augmented protocol πn,kRKPG is as follows.

1. The parties invoke the augmented RNG protocol πn,kRNG

′
, so that party

Pi receives the share xi. Every party also receives for each i ∈ I the
commitment ci to xi.

2. Each party Pi sends gxi to every other party, along with a ZK proof zi
that attests to the fact that the discrete log of gxi is the same as the value
committed to by ci.

3. Each party then reconstructs gx “in the exponent”, along with gxi for each
i ∈ I. These, along with the share xi constitute the output of the protocol
for player Pi.

To achieve this, one could use Pedersen’s verifiable secret sharing [7] to obtain
the perfectly hiding commitments of the shares4, and a ZKSNARK construction,
such as in [14], for the ZK proofs. We leave the full details of this augmentation
to future work.

6.5 Local Arithmetic

We will now describe the fundamental computational primitives for the SMPC
algorithm. This includes the standard operations that can be performed on
elements of a field, i.e. the field operations and their inverses. For most of the
operations, applying them locally to the shares (that is, each party applies them
to their own shares, and on a collective level we can describe this as operating
element-wise) results in the equivalent effect on the secret itself, with no effect
to the threshold of the sharing. The one operation for which this is not the case
is multiplication; here operating locally will indeed give a share of the product of
the secrets, but the threshold will increase and the sharing will exhibit unwanted
structure. This means some extra work will need to be done to achieve a desired
multiplication protocol. For all of the other operations, the fact that they can
be carried out locally means that no messages are exchanged between parties
and therefore a “protocol” that encapsulates one of these operations is trivially
secure under the security definition, and hence the corresponding theorems will
not be stated nor proven.

To simplify notation, write the sharing (xi)i∈I as xI . We will denote local
operations on shares as follows, where on the left we have the notation and the

4Pedersen’s scheme actually only involves constructing and sending commitments to the
coefficients of the sharing polynomial, but it is easy to obtain commitments to the shares from
these.
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right we have what it means:

cI = aI + bI cI = (ai + bi)i∈I
cI = aI − bI cI = (ai − bi)i∈I
cI = aIbI cI = (aibi)i∈I
cI = −aI cI = (−ai)i∈I
cI = raI cI = (rai)i∈I

We will consider an example to make this clear. Consider addition of two shared
values where each party Pi holds the shares ai and bi. Then Pi simply defines
the share ci to be ai + bi, and this will be its output of the addition protocol.

7 SMPC Protocols

In this section we will outline the protocols that are built from the primitives
outlined in the preceding section. The main goal that we are working towards is
to be able to perform an ECDSA signature where the private key is distributed
among the parties as a shared secret. To do this, we will construct the SMPC
protocols that will be sufficient to perform the signature. We will then be able
to leverage the composability property of the security framework to be able to
compose our building blocks together in a secure way.

7.1 Multiply and Open

The ideal functionality fn,kMO that represents the multiply and then open protocol
takes as input two sets of shares for two field elements and gives as output to
each party the product of these two secrets. The technique is the same as the
multiplication protocol in [3]. There, and in our case, we don’t need to multiply
shares more than once in a row, which allows us to make use of this simpler
protocol. If we wanted to achieve multiplication that could be performed as
many times as we liked, there exist techniques such as in [21] and [22].

Let aI and bI be two k-sharings of respective field elements a, b ∈ F. The
protocol πn,kMO (aI , bI) is defined by

cI = aIbI

c← πn,2kSO (cI)

Theorem 15. Let n ∈ N and k ≤ n
2 . Let t be such that t ≤ n−2k+1

2 and t < k.

Then the protocol πn,kMO t-securely evaluates fn,kMO .

We require that k ≤ n
2 otherwise after the multiplication the threshold of the

sharing would be too large for it to be possible to reconstruct the secret even
with n parties. The first requirement on t comes from πn,2kSO , and the second
requirement on t is the usual one to disallow the adversary to reconstruct secrets.
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7.2 Inversion

The ideal functionality fn,kINV that represents the field inversion protocol takes
as input a sets of shares of a field element and gives as output to each party
shares of the multiplicative inverse of this field element. This is the same as the
inversion protocol in [3] and was initially introduced in [23].

Let aI be a k-sharing of a field element a ∈ F. The protocol πn,kINV (aI) is
defined by

rI ← πn,kRNG

t← πn,kMO (aI , rI)

bI = t−1rI

Remark 6. Because the shares of the product are randomised by πn,kMO , it is
conjectured that it is safe to define rI using the less expensive biased RNG
protocol πn,kBRNG.

Theorem 16. Let n ∈ N and k ≤ n
2 . Let t be such that t ≤ n−2k+1

2 and t < k.

Let xI be a k-sharing of some x ∈ F \ {0}. Then the protocol πn,kINV (xI) t-securely

evaluates fn,kINV (xI).

The restrictions on k and t are due to πn,kMO . The only value that is opened is
the product of the secret and a random value, and so is uniformly random. Note
however that we need to require that the input shares are of a non-zero field
element, otherwise the open will reveal this fact. Also note that it is possible
that the random number is itself zero, and so if we were to be careful we would
check to see if the value we open is zero, and if it is, abort this attempt and
retry the protocol with a different random number. However, in our case we
ignore this because we will use a field with approximately 2256 elements and so
the probability that the random number is zero is negligible.

8 Signature Algorithm

The ideal functionality fn,kSIGN that represents the ECDSA protocol takes as input
a sets of shares of a field element (the private key) and a public field element
(the message digest) and gives as output to each party the values r, s which
constitute a valid ECDSA signature for the given private key and message.

Let dI be a k-sharing of a field element d ∈ F that represents an ECDSA
private key, and let z ∈ F be a message digest. Let the associated group in which
the public keys live, G, have prime order q. The protocol πn,kSIGN(dI , z) is defined
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by

(kI , pb)← πn,kRKPG

(x, y) = pb

r = x mod q

k′I ← πn,kINV (kI)

tI = rdI

tI = tI + zI

s← πn,kMO (tI , k
′
I)

Theorem 17. Let n ∈ N and k ≤ n
2 . Let t be such that t ≤ n−2k+1

2 and t < k.
Let dI be a k-sharing of a ECDSA private key, and let z ∈ F be a message digest.
Then the protocol πn,kSIGN(dI , z) t-securely evaluates fn,kSIGN(dI , z).

The restrictions on k and t are inherited from the constituent protocols.

Remark 7. For the system of interest, we set k = n
3 . In this case, the requirement

on t is that t ≤ n
6 + 1

2 . Note however that from the discussion of πn,kSO that we
still maintain safety with abort for t ≤ n

3 .
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A Measure and Probability Theory

We will use the measure theoretic formulation of probability theory. The key
structure from measure theory is that of a measure space, which is defined as
follows.

Definition 13. A measure space is a triple (X,Σ, µ) where X is a set, Σ is a
σ-algebra on X and µ is a function from Σ to R such that the following conditions
hold:

• For all E ∈ Σ, µ(E) ≥ 0

• µ(∅) = 0

• For any countable collection of disjoint sets E1, E2, . . . ∈ Σ we have

µ

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

µ(Ei)

In this formulation of probability theory, a probability space is simply a special
case of a measure space:

Definition 14. A probability space is a measure space (Ω,Σ,P) such that the
measure of the entire space is 1; that is,

P(Ω) = 1.

We will often consider the uniform probability measure on a finite set. We
define the standard notation that we will use and formalise the concept as follows.

Definition 15 (Uniform probability measure). Let E be a finite set. We denote
the uniform probability measure on the measurable space (E,℘(E)) by

UE : ℘(E)→ R.

That is, for each A ∈ ℘(E) we have UE(A) = |A|
|E| where the notation | · | denotes

the number of elements in the given set.

The next key object from probability theory is the random variable. This is
formalised as a measurable function.

Definition 16. Let (Ω,Σ,P) be a probability space and (E, E) be a measurable
space. A random variable X is a measurable function X : Ω→ E.

Note that the random variable X induces a probability measure µ on the
measurable space (E, E) which we can define by

µ : E → R
A 7→ P({ω ∈ Ω|X(ω) ∈ A}),
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and so we also have the induced probability space (E, E , µ). Also note that for a
measurable space (F,F) and measurable function f : E → F , we can define a
new random variable Y = f ◦X. Thus when we write f(X) we understand this
to be the random variable Y . It is also useful to define the following common
short hand notations:

Definition 17. Let (Ω,Σ,P) be a probability space, (E, E) be a measurable space
and X : Ω → E be a random variable. Let the induced probability measure on
(E, E) be µ. Define the following short hand notations:

• P(X = x) = µ(X = x) = P({ω ∈ Ω|X(ω) = x}) ∀x ∈ E

• P(X ∈ A) = µ(X ∈ A) = µ(A) ∀A ∈ E

While the latter is actually not shorter than the technically correct version,
it is conceptually clearer which is why we use it.

B Proof of Theorem 1

The following is the proof of Theorem 1

Proof. We need only show that µ(X = e) = 1
n for all e ∈ E. To do this, define

Ai,e = {ω ∈ Ω|fi(ω) = e} .

Since each fi is measurable, it follows that Ai,e ∈ Σ for all i ∈ [n] and e ∈ E.
Notice that these sets partition Ω; this is summarised in the following claim.

Claim 1. The sets Ai,e for i ∈ [n] partition Ω.

Proof. To show this, we need to show that each Ai,e is disjoint, and that they
cover Ω. The first property holds due to the assumption that fi(ω) 6= fj(ω)
for all i 6= j, i, j ∈ [n] and for all ω ∈ Ω. This assumption also shows that for
all ω ∈ Ω there must exist some i ∈ [n] for which fi(ω) = e, as E only has n
elements. But this is precisely the statement that ω ∈ Ai,e. This completes the
proof.

Also, these sets define a partition of our set of interest:

n⋃
i=1

Ai,e × {fi} = {(ω, f) ∈ Ω× F |X(ω, f) = e} .

Thus for any e ∈ E we have

µ(X = e) =
n∑
i=1

µ (Ai,e × {fi}) . (5)

By the definition of the product measure we know that

µ(Ai,e × {fi}) = P(Ai,e)UF ({fi}),
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and so using this and the fact that A1,e, . . . , An,e partitions Ω we can reduce (5)
to

µ(X = e) =
1

n

n∑
i=1

P(Ai,e)

=
1

n
,

which is the desired result.

C Shamir Secret Sharing Theorem Proofs

First we present the proof of Theorem 3.

Proof. We consider three separate cases.

• t ≥ k: In this case, we can view equation (1) as a set of t linear equations
with k unknowns, and hence has a unique solution for (x, c1, . . . , ck−1)
(and in the cases where t > k and the set of equations is overconstrained,
we know that it will not have no solutions because we have defined the
sharing to be correct). Let this solution be z = (y, z1, . . . , zk−1). Then
from independence we have

Pt(X = z) = Pt

(
x = y ∩

k−1⋂
i=1

ci = zi

)
= Pt(x = y)Pt((c1, . . . , ck−1) = (z1, . . . , zk−1))

= µ({y})|F|−k+1,

which is the desired result for this case.

• t = k − 1: Suppose that we fix x in equation (1). We will again have a
system of (in this case k − 1) linear equations with as many unknowns,
and so we must have a unique solution dy for (c1, . . . , ck−1) for a given set
of shares z. We may therefore write

Pt(X = z) =
∑
y∈F

Pt(x = y ∩ (c1, . . . , ck−1) = dy)

=
∑
y∈F

µ({y})|F|−k+1

= |F|−k+1.

Since t = k − 1 this is the desired result.

• t < k − 1: Here we take a similar approach to the previous case. If we fix
x = y but also (ct+1, . . . , ck−1) = c in equation (1), then we have t linear
equations in the t unknowns c1, . . . , ct, which has a unique solution for
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a given set of shares z that we will denote dy,c. We may then write the
probability P (X = z) as∑

y∈F

∑
c∈Fk−1−t

Pt(x = y ∩ (c1, . . . , ct) = dy,c ∩ (ct+1, . . . , ck−1) = c),

which we can again use independence and our known distributions to
simplify to ∑

y∈F

∑
c∈Fk−1−t

µ({y})|F|−t|F|−k+1+t = |F|−t.

This final case completes the proof.

Now we present a proof of Theorem 5.

Proof. Consider the Vandermonde matrix for the elements (xi)i∈R, which is
defined as

V =


1 i1 i21 · · · it1
1 i2 i22 · · · it2
1 i3 i23 · · · it3
...

...
...

. . .
...

1 ik i2k · · · itk

 ,

where R = {i1, . . . , ik}. If we define s to be the k-vector of shares (xi)i∈R, and
c to be the k vector of coefficients, then by the way secret sharing is defined we
have the relationship

V c = s.

It is well known that the determinant of the Vandermonde matrix V above is

det(V ) =
∏

1≤p<q≤k

(ip − iq),

and is hence non-zero, if ip 6= iq for all p, q ∈ R, p 6= q, which in our case is true.
This means that V is invertible, and so we may write

c = V −1s.

We can thus complete the proof by defining λ
(j)
i as the (j, i) element of V −1.
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D Proof of security of πn,kSO

Here we provide full mathematical details for the proof of Theorem 7.

Proof. Let an adversary A be given. Let input x and auxiliary input z be given.
We will outline briefly our proof strategy, as we will also use it in other proofs.
By definition, our end goal is to construct S such that

EXECπn,k
SO ,A(x, z)

d
= IDEALπn,k

SO ,S(x, z)

We could try to compare these random variables directly, but in general this is a
little cumbersome and complicated, as many elements of these random variables
will have dependencies on each other. In addition, the view for S will have to
be constructed by reverse-engineering based on the output of the trusted party,
which makes the equality of the distributions less clear. To try to make things
easier, we will identify the key source of randomness that determines these views,
and a deterministic function that maps this to the view. For example, if a view
contains all of the shares of some k-sharing, instead of considering the shares
directly, we could use only the k coefficients that determine the sharing, and then
we can map these deterministically to the shares. Specifically, we seek random
variables X and Y (the simplified randomness) and a deterministic function h

such that h(X)
d
= EXECπn,k

SO ,A(x, z) and h(Y )
d
= IDEALπn,k

SO ,S(x, z). Then, we will

show that X
d
= Y , at which point we may apply Theorem 2 to arrive at our

desired result.
In our current case, we begin by characterising EXECπn,k

SO ,A(x, z). The first

messages that A receives are the t output messages (zi)i∈Ic from πn,kRZG . The next
part of the view comes from the n− t messages (yi)i∈Ih that the uncorrupted
parties send in the broadcast round. Next, A sends its t messages (mi)i∈Ic in
the broadcast round. The final part of EXECπn,k

SO ,A(x, z) is the outputs of the

parties; this is t ⊥s that are output by the corrupted parties and n− t elements
of F (that should all be the same and equal to the secret corresponding to the
sharing x). We can thus write

EXECπn,k
SO ,A(x, z) =

(
(zi)i∈Ic , (yi)i∈Ih , (mi)i∈Ic , s

′) ,
where for simplicity we ignore the outputs of the corrupted parties and only
include one field element s′ to represent the output of the honest parties.

The “key randomness” for EXECπn,k
SO ,A(x, z) as discussed at the beginning of

this proof is captured by the random variable

X =
(

(ci)i∈[k−1]0
, (mi)i∈Ic

)
,

where (ci)i∈[k−1]0
are independently and uniformly randomly distributed elements

of F, representing the coefficients for the sharing (zi)i∈I of zero, and (mi)i∈Ic are
the messages that A would send in the broadcast round. We describe the latter
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more specifically. The messages that A will send in any given round depends
on its random tape and all of the messages it has received up to that point.
The random tape is picked uniformly randomly, so we need only consider the
messages it has received up until the broadcast round; these are its shares of
zero and the randomised shares sent by the honest parties. We will assume that
the shares of zero come from a uniformly random sharing of zero, and that the
shares received from the honest parties come from a uniformly random sharing
of x, the secret corresponding to the input shares. If we let the coefficients
that define the input sharing be cx ∈ Fk, then we can define our deterministic
function h by the mapping

(c,m) 7→ (ϑk(Ic, c), ϑk(Ih, c+ cx),m, s) ,

where we interpret c+ cx to be element-wise addition.

We want to show that h(X)
d
= EXECπn,k

SO ,A(x, z). As previously mentioned,

the third element (the messages sent by A) depend only on the previous two
elements, as these are the messages received up until the broadcast round. This
means that if we ensure that these first two elements have the correct distribution,
the third will too. Now, notice that the final element of EXECπn,k

SO ,A(x, z) will

be fixed and equal to s. This is because by definition and the assumptions on
t the honest parties will hold at least n+k−1

2 correct shares and so can always
correctly reconstruct s. Since this final element is fixed for the given inputs,
and in h is defined to be that same fixed value s, the final element will always
be correct. Finally, we notice that in fact the first element is a deterministic
function of the second element. This is because since |Ih| ≥ k we know that
(yi)i∈Ih completely determines the rest of the shares (yi)i∈Ic and the random
shares of zero satisfy zi = yi − xi for all i ∈ Ic, where x = (xi)i∈I . Thus we
consider only the second element. In EXECπn,k

SO ,A(x, z), this element is distributed

as a part of a uniformly random sharing of s. This follows from the fact that the
output shares of πn,kRZG will be a uniformly random sharing of zero, and Corollary 1.
In h(X), this element will also have this distribution for exactly the same reason;
c is distributed in the same way as the coefficients of a uniformly random sharing

of zero. We therefore conclude that h(X)
d
= EXECπn,k

SO ,A(x, z).

With this result established, we now seek to construct S and a random

variable Y such that h(Y )
d
= IDEALπn,k

SO ,S(x, z) and X
d
= Y . Define the simulator

adversary S as follows.

1. Let the output from the trusted party be s (by definition it will always
be the secret corresponding to the sharing x). S begins by constructing a
random sharing (yi)i∈I of s.

2. S now defines

zi = yi − xi ∀i ∈ Ic.

3. S now runs A after giving it (zi)i∈Ih and (yi)i∈Ih to get the messages
(mi)i∈Ic that A sends in the broadcast round.
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4. S then outputs

(zi)i∈Ic , (mi)i∈Ic , (yi)i∈Ih

as the generated view.

We now aim to construct Y . Let (yi)i∈I and (mi)i∈Ic be distributed as
in the description of S. Let the coefficients corresponding to this sharing

be cy = (c
(y)
i )i∈[k−1]0

and let cx = (c
(x)
i )i∈[k−1]0

, and define the coefficients

c = (ci)i∈[k−1]0
by

ci = c
(y)
i − c

(x)
i ∀i ∈ [k − 1]0 . (6)

We then define

Y =
(

(ci)i∈[k−1]0
, (mi)i∈Ic

)
.

With Y defined, our next step is to show that h(Y )
d
= IDEALπn,k

SO ,S(x, z). The

same argument as before shows that to do this we need only consider the second
element of these distributions. For this element, the honest shares (yi)i∈Ic , these
clearly have the same distribution since c+ cx = cy by definition and ϑk(Ih, cy)
has the same distribution as the corresponding element in IDEALπn,k

SO ,S(x, z) also

by definition. Thus h(Y )
d
= IDEALπn,k

SO ,S(x, z).

The final step for our proof is to show that X
d
= Y . The first element in X is

distributed as k− 1 independently and uniformly randomly distributed elements
of F (the coefficient c0 is 0 ∈ F as it is a sharing of zero). In Y the distribution

is the same, which follows from Eq. (6), Corollary 1 and the fact that each c
(y)
i

is independently and uniformly distributed for each i ∈ [k − 1], and also the fact

that c
(y)
0 = c

(x)
0 . Finally, the second elements have the same distribution due

to their construction and the fact that they otherwise only depend on the first
element.

E Proof of Security of πn,kRNG

Here we provide full mathematical details for the proof of Theorem 11.

Proof. Let adversary A, input x and auxiliary input z be given.
We will characterise EXECπn,k

RNG ,A
(x, z). Define m to be the messages that

were sent and received during step 1 (except for the output shares of each

invocation of πn,kBRNG, these will be labelled separately) and also define mo to be

the messages sent by A for each of the invocations of πn,k,jDO in step 3. It follows
that EXECπn,k

RNG ,A
(x, z) is equal to

m,

((
r
(j)
i

)
i∈Ic

)
j∈[k]

,mo,
(
ri, (rj,i)j∈I

)
i∈Ic

, (yi)i∈[n],
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where yi is defined as in πn,kRNG if i ∈ Ih, and ⊥ otherwise. Note that this

is independent of the input x to πn,kRNG as any such input is ignored by the

protocol (and also by fn,kRNG ). Denote the set in which this lives by F ; i.e.
EXECπn,k

RNG ,A
(x, z) ∈ F .

We now seek to define a random variable X taking values in some set E and
a function h : E → F in order to eventually apply Theorem 2. To do this, first
define the random variable X as

X =

(
m,

((
r
(j)
i

)
i∈I

)
j∈[k−1]0

,mo

)
,

which is produced by A interacting with the trusted party for πn,kBRNG, and where
the random tape for A and the trusted party is uniformly randomly chosen.
Define the set E implicitly as the set that X takes values in. Now we can define
our function h as

h : E → F

(m, r,mo) 7→
(
m, ν(r),mo,

(
ϑk({i}, µ(r)), (ϕ(r, j, i))j∈I

)
i∈Ic

, (λ(i, µ(r)))i∈I

)
,

where we have the following definitions:

• ν simply projects r, which includes shares for all parties, to just those
shares that the corrupted parties receive; i.e.

ν

(((
r
(j)
i

)
i∈I

)
j∈[k−1]0

)
=

((
r
(j)
i

)
i∈Ic

)
j∈[k−1]0

.

• µ maps the set of shares ((
r
(j)
i

)
i∈I

)
j∈[k−1]0

to their corresponding (uniquely defined) secrets for each j ∈ [k − 1]0; the
output is (ci)i∈[k−1]0

. In the protocol these are the coefficients correspond-

ing to the final random sharing.

• ϕ converts the shares of the coefficients into shares of the shares, as in
step 2 of the protocol. It is defined as

ϕ : Fnk × F2 → Fn((
r
(j)
i

)
i∈I

)
j∈[k−1]0

, (i, j) 7→
k−1∑
l=0

r
(l)
i jl

• λ is defined by

λ : F× Fk → F ∪ {⊥}(
i, (cj)j∈[k−1]0

)
7→

{
⊥ i ∈ Ic∑k−1
j=0 cji

j i /∈ Ic
,
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Now, we claim that EXECπn,k
RNG ,A

(x, z)
d
= h(X). This is immediate for the first

three elements, as they are generated in X exactly as they are in πn,kRNG and using
the same distributions. As for the second last element, which represents the
messages during the invocations of πn,k,jDO , this is correct due to how it is defined

from r in h(X) and the correctness property that the output of πn,kDO enjoys from
its proof of security. Similarly, the fact that the last element has the correct
distribution also follows from its definition in EXECπn,k

RNG ,A
(x, z) and in h(X).

Now that we have characterised EXECπn,k
RNG ,A

(x, z), we turn our attention to

the simulated view. The idea behind the simulator is as follows. The simulator
can run the protocol as usual up until step 3. At this point, A does not know
what the secrets for the random sharings are, and the honest parties shares will
be uniformly random conditioned on the fact that they are consistent with A’s
shares. This allows the simulator to simply extend the corrupted parties’ shares
(which are known by the simulator since it holds enough shares to reconstruct
them) to valid random sharings of the target output shares, and this will have
the correct distribution.

The simulator is defined as follows.

1. The trusted party is invoked first. Let the output shares of the trusted
party be (yi)i∈I .

2. S runs A and acts on behalf of the honest parties for Step 1. In doing

so, S learns the biased shares
(
r
(j)
i

)
j∈[k−1]0

for each i ∈ Ic, i.e. for each

corrupted party. Label the messages sent and received by A during the
invocations of πn,kBRNG as m, and the messages that A would send to the

invocations of πn,k,jDO as mo.

3. S constructs the honest parties’ shares

((
r
(j)
i

)
i∈Ih

)
j∈[k−1]0

as follows.

First, S picks random coefficients (ci)i∈[k−1]0
that are consistent with the

target shares (yi)i∈Ic , i.e. S picks uniformly randomly from the set(ci)i∈[k−1]0
∈ Fk

∣∣∣∣∣∣yi =
k−1∑
j=0

cji
j ∀i ∈ Ic

 .

Next, the honest parties’ shares are chosen at random under the condition

that
(
r
(j)
i

)
i∈I

is a consistent sharing of cj for each j ∈ [k − 1]0. Precisely,

the shares are chosen uniformly randomly from the set
((

r
(j)
i

)
i∈Ih

)
j∈[k−1]0

∈ Fk(n−t)
∣∣∣∣∣∣
∀j ∈ [k − 1]0
∃(c′l)l∈[k−1]
∀i ∈ I

: r
(j)
i = cj +

k−1∑
l=1

c′li
l

 .
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4. Let the random variable Y be defined as

Y =

(
m,

((
r
(j)
i

)
i∈I

)
j∈[k−1]0

,mo

)
.

S finishes by constructing its output by computing h(Y ) and discarding
the last element, which corresponds to the output of the protocol; recall
that this is not part of the simulator’s output as instead this is defined by
the output of the trusted party.

Now we need to consider IDEALπn,k
RNG ,S

(x, z). We want to show that h(Y )
d
=

IDEALπn,k
RNG ,S

(x, z). This is clearly true for all but the last element because of

how IDEALπn,k
RNG ,S

(x, z) was constructed. But the last element will also have the

correct distribution with regard to the others due to its construction, as Y was
reverse engineered to be consistent with the given output of the trusted party.

Finally, we want to show that X
d
= Y , as then by Theorem 2 we will have

h(X)
d
= h(Y ), which gives the last equality needed to show that

EXECπn,k
RNG ,A

(x, z)
d
= IDEALπn,k

RNG ,S
(x, z)

which will complete the proof. By construction, this is clearly true for all but
the honest party shares ((

r
(j)
i

)
i∈Ih

)
j∈[k−1]0

,

so we need only focus our attention on these. In the case of X, we know from
the secrecy property of the output shares of πn,kBRNG that

r
(j)
h =

(
r
(j)
i

)
i∈Ih

is independently and uniformly distributed in S
r
(j)
c ,I,Ic

for each j ∈ [k − 1]0,

where

r(j)c =
(
r
(j)
i

)
i∈Ic

.

The result for Y follows from the proceeding claims, the proofs of which will
conclude the proof of security.

Claim 2. The coefficients c = c0, . . . , ck−1 as defined in the simulation are
independently and uniformly randomly distributed.

Proof. Since the coefficients of a k − 1 degree polynomial are completely de-
termined by k points on that polynomial, we can see that for a given set of
shares y = (yi)i∈Ic (which is t points), we could choose any set of k− t points to

determine the coefficients. Thus for a given y there are |F|k−t possible choices for
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c, each one being picked with equal probability. Now, consider the probability of
obtaining some given c, using the fact that y is chosen uniformly randomly. For
this given c, there is a unique y that is consistent with c, and this y is chosen
with probability |F|−t. But we not only require that the uniquely determined y
was chosen, but also the unique c for the possibilities determined by y, for which
we have just seen there exists |F|k−t choices, each chosen with equal probability.
Putting these two results together, we find that the probability for a given c is
|F|−k. Since c ∈ Fk, the result follows.

Claim 3. For each j ∈ [k − 1]0, the shares r
(j)
h as defined in the simulation are

independently and uniformly randomly distributed in S
r
(j)
c ,I,Ic

.

Proof. The independence of each r
(j)
h follows easily from the independence of

each cj . Next, notice that for a given cj , r
(j)
h ∈ Acj where for each c ∈ F we have

Ac =

{
r
(j)
h ∈ Fn−t

∣∣∣∣∣∃(c′i)i∈[k−1] : ∀i ∈ Ic, ri = c+

k−1∑
l=1

c′li
l

}
.

Since a polynomial with degree k is completely determined by k points, so too
are its coefficients, and hence each distinct element (which is a set of n− t > k
shares) in Ac corresponds also to a distinct set of coefficients c, c′1, . . . , c

′
k−1.

From this it follows that for c 6= d we have that Ac and Ad are disjoint sets. Now,

since r
(j)
h is chosen uniformly randomly from Acj , and cj is uniformly random,

it follows that r
(j)
h is chosen uniformly randomly from the set⋃

cj∈F
Acj .

But it is easy to see that this set is equal to S
r
(j)
c ,I,Ic

.

This completes the proof.
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